Ela a Factorization of the Inverse of the Shifted Companion Matrix

نویسنده

  • JARED L. AURENTZ
چکیده

A common method for computing the zeros of an n-th degree polynomial is to compute the eigenvalues of its companion matrix C. A method for factoring the shifted companion matrix C − ρI is presented. The factorization is a product of 2n − 1 essentially 2 × 2 matrices and requires O(n) storage. Once the factorization is computed it immediately yields factorizations of both (C − ρI) and (C − ρI). The cost of multiplying a vector by (C − ρI) is shown to be O(n), and therefore, any shift and invert eigenvalue method can be implemented efficiently. This factorization is generalized to arbitrary forms of the companion matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms

In this paper‎, ‎an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms‎. ‎We use different drop tolerance parameters to compute the preconditioners‎. ‎To study the effect of such a dropping on the quality of the ILU ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013